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Abstract

Dispersion of solid particles in three dimensions in a fully developed nonhomogeneous turbulent flow in

a channel was studied. A particle point source at a distance of 40 wall units from the bottom wall was

considered. Data were obtained by carrying out experiments in a direct numerical simulation. The relative

roles of gravity and of turbulence in dispersing the particles are examined. The results are used to test the

accuracy of a stochastic Lagrangian model which utilizes a modified Langevin equation to represent the

fluid fluctuations seen by a solid particle. All of the parameters, with the exception of the time scales, are
obtained from Eulerian statistics. Good agreement is obtained by assuming the spatial variation of the time

scales is the same as would be obtained by examining the dispersion of fluid particles. The Langevin

equation is further tested by considering the settling of particles that are uniformly distributed in the flow

field at time zero. There is some evidence to support the suggestion that the gravitational settling velocity at

the wall is greater than the free-fall velocity.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper has two aspects: It presents new results on the behavior of heavy particles in a
turbulent fluid flowing through a horizontal channel, that are obtained from experiments in a
direct numerical simulation (DNS). It also explores the use of a stochastic method to describe the
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influence of gravity on turbulent dispersion and deposition of solid particles that originate from a
point source in a nonhomogeneous field. The analysis involves the solution of the equation of
motion of a solid particle and the modeling of the fluid turbulence seen by the particle by using a
modified Langevin equation. The results are compared with the DNS experiments.

The motivation is to describe particle concentration fields in a turbulent flow. The type system
of interest is one in which particles are removed from the bottom boundary of a channel through
which a fluid is flowing turbulently. These particles have an initial velocity, which is random.
Their subsequent behavior is governed by fluid drag and gravity. The particles undergo a tur-
bulent motion and eventually settle at the bottom boundary. The goal is the development of
sound theoretical approaches that predict particle concentration profiles in dilute suspensions of
drops or of solid particles, such as observed in horizontal gas–liquid annular flows and sediment
transport.

The classical approach is to use an Eulerian framework whereby a mass balance equation is
applied to a fixed volume in space (O�Brien, 1933; Rouse, 1937). Thus, for fully developed flow in
a channel, the concentration distribution, Cðx2), is described by

�VT
dC
dx2

¼ d

dx2
e
dC
dx2

� �
ð1Þ

Here VT is the free-fall settling velocity and e is a turbulent diffusivity. Eq. (1), essentially, equates
the free-fall velocity to a diffusion velocity associated with the concentration gradient. This ap-
proach has a number of flaws: (1) The particles might never reach the free-fall velocity since they
are not in the fluid long enough. Furthermore, particles coming off of the bottom boundary
would, on average, be moving away from the boundary. (2) The specification of the turbulent
diffusivity of the particles, eðx2Þ, does not have a firm foundation. (3) The boundary condition at
x2 ¼ 0 needs to be specified empirically.

An alternate approach is to use a Lagrangian framework in which the bottom boundary is
considered to consist of a series of sources of particles. The concentration profile is then described
as resulting from the net contribution of these wall sources. The main theoretical problems are to
describe the behavior of one of these sources and to develop a physical understanding of how
particles are lifted from the bottom boundary. This paper addresses the first of these problems.

The Lagrangian approach outlined above has been applied by Binder and Hanratty to vertical
gas–liquid annular flow (1991), to horizontal gas–liquid annular flow (1992) and to sediment
transport (1993). The flow field was homogeneous, the particles were assumed to enter the field
with a velocity that is proportional to the friction velocity. The concentration profiles of particles
originating from a source at time zero were calculated as a function of time by a deterministic
differential equation, motivated by Taylor�s theory of diffusion from a source in a homogeneous
isotropic field. These works have a kinship to an analysis by Hunt and Nalpanis (1985) which
represents concentration profiles in the saltation regime as the result of a series of deterministic
particle trajectories that originate from the bed surface. In a sense, they extend the saltation
analysis so as to include nondeterministic effects of turbulent diffusion.

The present paper explores an improved method for describing the behavior of a source, by
considering the nonhomogeneity of the field and by directly accounting for the stochastic behavior
of the particles. The system considered is fully developed turbulent flow in a channel. The source
of particles is located at a distance of 40 wall units from the bottom wall, where a wall unit is
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defined as the ratio of the kinematic viscosity to the friction velocity. The particles are assumed to
have the same velocity as the fluid at time zero. The Eulerian properties of the fluid turbulence are
obtained from a DNS. The use of x2 ¼ 40 as the source location was motivated by a desire to
examine conditions for which nonhomogeneities of the turbulence are playing an important role.
Furthermore, for most systems of interest, the viscous wall region is negligibly thin, so x2 ¼ 40 is
essentially at the wall. The Langevin equation developed in these studies is tested by considering
the settling of solid particles which are uniformly distributed over the flow field. This is done by
adding the contributions from a distribution of instantaneous sources.

The equation of motion of the solid particles is solved exactly in a computer experiment, in
which the fluid velocity at the particle position is supplied by a DNS. In the stochastic model, the
solid particle equation of motion is the same as in the computer experiment, but the fluid velocities
seen by the solid particles are modelled with a modified Langevin equation.

The computer experiment clearly shows an Eulerian approach such as Eq. (1) does not capture
the influence of the previous history of the diffusing particles. However, the Lagrangian approach
should address the central problem that the time variation of the statistical properties of the fluid
velocity seen by the diffusing particles is different from the time variation of diffusing fluid par-
ticles because inertial and gravitational effects cause the solid particle to become disengaged from
the fluid particle in which it is immersed. A theoretically sound solution to this problem is not
available for fields which are neither homogeneous nor isotropic. The approach taken in this
paper is to argue that the problem of accounting for the effects of turbulence nonhomogeneities is
of primary importance and that the representation of the time variation of the turbulence seen by
the solid particle can be approximated from studies of the dispersion of fluid particles. We use the
Langevin equation to represent the fluid turbulence because previous work has demonstrated its
ability to capture the effects of nonhomogeneities (Iliopoulos and Hanratty, 1999). The time
constant in the Langevin equation can be adjusted to take account of the inability of heavy
particles to follow exactly fluid particles. (However, it was found that this was not necessary.) The
approach described above has previously been explored by Perkins (1992) in his study of dis-
persion of heavy particles in a turbulent jet. It is further discussed in a paper by Pozorski and
Minier (1998).

2. Dispersion in a homogeneous turbulence

Most of the theoretical work on dispersion of spherical particles from a point source has
considered a homogeneous isotropic field, for which the mean velocity is zero. Friedlander (1957)
solved the equation of motion,

d~vv
dt

¼ bð~uu�~vvÞ ð2Þ

where~vv is the particle velocity,~uu is the randomly varying fluid velocity and b is the reciprocal of
the inertial time constant, defined as

b ¼ 1

sp
¼ 3

4

CDqf

dpqp

jusj ð3Þ
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Here dp is the particle diameter, qpis the particle density, qf is the fluid density, CD is the drag-
coefficient and jusj is the magnitude of the slip velocity (fluid minus particle velocity). The di-
mensionless inertial time constant of the particle, sþp ¼ u�2=vfb, expresses the ratio of the drag
force of the carrier fluid to the inertia of the particles. It is also a measure of the stopping distance
of a particle in a still fluid to the thickness of the viscous wall layer. Friedlander showed that under
stationary conditions the dispersion of particles in a homogeneous isotropic field can be char-
acterized by a turbulent diffusivity, defined as

ep ¼ u2
Z 1

0

RðhÞdh ð4Þ

where h represents time and the correlation RðhÞ is different from the Lagrangian or the Eulerian
velocity correlation coefficients defined for the fluid. It represents the correlation of the fluid
velocities seen by the particles, whose paths are unknown. For an approximation by an expo-
nential function RðhÞ ¼ expð�ahÞ the turbulent diffusion coefficient is

ep ¼
u2

a
¼ ef

asLF
ð5Þ

where sLF is the Lagrangian timescale of the turbulence and ef is the diffusivity of the fluid. The
ratio of the velocity fluctuations of the solid particles to the velocity fluctuations of the fluid is
given as

v2

u2
¼ bsLF

asLF þ bsLF
ð6Þ

For large b (small particle inertia) v2 ¼ u2. However for small b (large particle inertia) v2 can be
much smaller than u2. The evaluation of RðhÞ presented a challenging theoretical problem, which
was solved by Reeks (1977) and by Pismen and Nir (1978) for a homogeneous, isotropic field, by
an iterative approach.

3. Dispersion in a nonhomogeneous field

3.1. Model for particle motion

A simplified equation of motion of a solid particle which includes only drag and gravity forces
is considered. The fluid velocity, ~UU , is the sum of an average and a fluctuating component. The
velocity of a particle, ~VV , is obtained by integrating the following equation:

d~VV
dt

¼ � 3

4

qfCD

dpqp

j~VV � ~UU jð~VV � ~UUÞ þ~gg 1

 
� qf

qp

!
ð7Þ

where ~gg is the acceleration of gravity and g2 ¼ �gðg > 0Þ, g1 ¼ g3 ¼ 0. The subscripts 1, 2, 3
indicate the streamwise, wall-normal and spanwise components. The drag-coefficient is given by
the following expression (Clift et al., 1978):
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CD ¼ 24

Re
ð1þ 0:15Re0:687Þ ð8Þ

where Re is the particle Reynolds number defined with the particle diameter and the magnitude of
the relative velocity j~VV � ~UU j. The equation of motion for the particles includes the effect of
nonlinearities on the fluid drag but does not include the effects of lift.

Eq. (7) is to be solved for particles originating at t ¼ 0,~xx0 with some specified velocity ~VV0. The
change of the location of a particle over some time interval, dt, is given by

d~xx
dt

¼ ~VV ð9Þ

The velocity of the fluid, encountered by the particle, ~UUð~xx; tÞ is a random function. The solution of
Eqs. (7) and (8) for a typical ~UUð~xx; tÞ gives a possible realization of ~VV ð~xx; tÞ and~xxðtÞ. Dispersion is
calculated by considering the average of a large number of trajectories. The principal problem is
the specification of ~UUð~xx; tÞ from a knowledge of the Eulerian or Lagrangian statistics describing
the fluid turbulence.

3.2. Stochastic model for dispersion of fluid particles

The starting point for the execution of the analysis outlined above is the development of a
stochastic representation of the dispersion of fluid particles. The classical paper by Taylor (1921)
describes the statistical behavior of a large number of fluid particles originating from a point
source in a homogeneous, isotropic turbulent field. The Langevin equation produces the same
results as Taylor�s analysis if the correlation coefficient is given as R ¼ expð�t=sL), where sL is the
Lagrangian time scale. However, it has the advantage that it can be used in more complicated
flows, so a number of investigators have explored ways to adapt it to nonhomogeneous fields
(Durbin, 1983, 1984; Hall, 1975; Legg and Raupach, 1982; Reid, 1979; Reynolds, 1997; Thomson,
1984, 1986, 1987).

The approach taken in this paper is close to that suggested by Thomson. It is described in a
thesis by one of the authors (Iliopoulos, 1998) and in a recent paper by Iliopoulos and Hanratty
(1999). The fluid velocity is defined as the sum of the Eulerian average, �UUiðx2Þ, and a fluctuation ui.
For a fully developed flow, the following stochastic equation is used to represent a possible change
of the components of ~uu along the trajectory of a fluid particle:

d
ui
ri

� �
¼ � ui

risi
dt þ dli þ Aidt ð10Þ

where Aidt represents the average of random forcing functions for a large number of trajectories,
and dli is a random variable with zero mean. Repeated indices do not imply summation. The
Eulerian root-mean-square of ui is designated by ri and

�AAi ¼
o u2ui

ri

� 	
ox2

ð11Þ

For homogeneous isotropic turbulence, ri and si are constants, �AAi ¼ 0 and si is the Lagrangian
timescale sL. For inhomogeneous flow ri and si are allowed to vary with x2 and Ai 6¼ 0.
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Expressions for the moments of dln
i are given by Iliopoulos and Hanratty (1999). For example,

the ensemble averages of covariances of dli are given as

dlidlj ¼
o

uiuju2
rirj

ox2

(
þ uiuj

rirj

1

si

�
þ 1

sj

�)
dt þ oðdtÞ2 ð12Þ

The spatial variation of riðx2Þ is obtained from the measured or calculated Eulerian properties of
the turbulence. The time scales si can be rigorously defined only for homogeneous isotropic
turbulence. Researchers have interpreted si as the local decorrelation rate, that is, the persistence
of motion in a certain direction. However its exact definition is unclear.

The results presented in this paper are for the single case of a fully developed flow. As men-
tioned earlier, they can find direct application in developing methods to predict entrainment in
horizontal fully developed annular flows (Pan and Hanratty, 2002). However, they could also be a
starting point for analyzing more complicated flows. More general formulations are given by
Thomson (1986) for a Gaussian forcing function and by Reynolds for a skewed forcing function
(1997). For three-dimensional flows, a formulation of the Langevin equation which models the
instantaneous total velocity, Ui ¼ Ui þ ui, rather than ui (Pope, 1994), could be a more attractive
approach. Time scales, both in simple and complex flows, have been defined as equal to 2r2

i =C0e,
where e is the dissipation of turbulent energy (Tennekes, 1979). Sawford (1991) suggested C0 ¼ 7
and Du et al. (1995) suggested C0 ¼ 3
 0:5 from experiments done in a homogeneous, isotropic
field.

3.3. Stochastic model for fluid turbulence seen by the solid particles

As discussed in Section 2 the solid particles do not follow the fluid particles so a fundamental
problem is how to take this into account. An approach which has been explored by a number of
investigators is to use two step stochastic models. Over a given time interval the displacement of
the particle and of the fluid particle with which it is in contact are calculated.

A stochastic model is used to specify a new velocity for the fluid particle. The fluid particle and
the solid particle end up at different locations since they had different velocities at the beginning of
the time interval, dt. Therefore a method needs to be developed to relate the velocity of the fluid in
contact with the particle to the new velocity specified for the displaced fluid element. This has been
done by using a spatial correlation function. As pointed out in an extensive review by Pozorski
and Minier (1998), theoretical justification for this approach has not been developed. A recent
work by Ushijima (Ushijima, 1998; Ushijima and Perkins, 1998) presents evidence that the use of
an Eulerian space correlation in a two step analysis is fundamentally wrong. Furthermore, the
method for implementing the two-step model in a nonhomogeneous field is not obvious.

Therefore, the much simpler approach of using Eq. (10) to describe the velocity of the fluid seen
by the particle has been taken. The time constant might need to be adjusted to take account of the
discrepancy between the velocity history of fluid particles and the velocity history of the fluid seen
by solid particles along a trajectory. The expectation is that si could depend on a dimensionless
inertial time constant of the solid particles and a dimensionless free-fall velocity. The motivation is
that it is more important to capture effects of nonhomogeneities of the fluid turbulence than to
describe exactly the consequences of the solid particle not following a fluid particle. That is, the
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results of the analysis will be forgiving of errors in specifying siðx2Þ. Furthermore, the analysis is
much easier to execute than is a two step stochastic model.

4. Studies in a DNS of turbulent flow in a channel

4.1. Description of studies of dispersion from a point source

All results are presented in nondimensional form using the friction velocity and the kinematic
viscosity. The system considered is fully developed flow between two horizontal smooth walls,
separated by a distance 2H , that extends to infinity in the streamwise and spanwise directions. The
Reynolds number, based on the average fluid velocity and the distance between the planes, 2H , is
4520. Dimensionless H equals 150. The three-dimensional, time-dependent fluctuating velocity
field was obtained by solving numerically the Navier–Stokes and continuity equations in a three
dimensional grid, as described by Lyons et al. (1991). The computational volume had dimensions
of 1900 and 950 in the x1 and x3 directions. A periodic boundary condition was used in the x1 and
x3 directions. The number of grid points was 128� 65� 128. The resolution in the x2 direction
varied from 0.18 at the wall to 7.4 at the center of the channel. The resolutions along the other
coordinates were Dx1 ¼ 15 and Dx3 ¼ 7:4. The computational time step was 0.25.

Particles were released at x2 ¼ 40 with the same velocity as the fluid. For each particle, the
change of velocity and of position with time was calculated with Eqs. (7) and (9). The first-order
Euler explicit method was used for the first time step. Then the second-order Adams–Bashforth
method was used. The fluid velocity appearing in Eq. (7), was obtained from the DNS by using an
interpolation scheme developed by Kontomaris et al. (1992). A particle deposited on the wall
when it hit the wall. Statistics were calculated by averaging results from 16129 particle paths. This
simulation was performed over a time period of 400.

Conditions were selected so as to have an inertial time constant (bsLF ¼ 1:7) that permits the
particles to follow the turbulence reasonably well over most of the flow field, when there is no
gravitational field, and a ratio of stopping distance to the thickness of the viscous wall layer
(b�1 ¼ 20) that allows the particles to move through a region close to wall by free-flight (McCoy
and Hanratty, 1977). This was accomplished by using a particle radius of dp=2 ¼ 0:18 and a ratio
of particle to fluid density of qp=qf ¼ 2650. The Froude number, u�2=2~gg eHH , was 0.145, where ~gg andeHH have dimensions. Then, g ¼ 1=2 FrH ¼ 0:023, VT ¼ b�1gð1� qf=qpÞ ¼ 0:46. The Lagrangian
time scale, sLF, used in these characterizations was calculated with a relation given by Vames and
Hanratty (1988), ef ¼ 0:037 D, where ef is the dimensionless turbulent diffusion coefficient and D is
the dimensionless pipe diameter. By substituting the hydraulic diameter of the two dimensional
channel (4H ) for D, the Lagrangian time scale is calculated as tLF ¼ 35 by using the dimensionless
turbulent intensity, 0.8.

4.2. Results for dispersion from a point source

This section presents DNS results for dispersion of solid particles originating from x2 ¼ 40 and
discusses, in a few places, results for dispersion of fluid particles that have been presented in a
previous article by Mito and Hanratty (2002). The latter will be referenced as MH.
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Concentration profiles of solid particles are plotted in Fig. 1 as solid curves. The 16129 particles
spread as a cloud in the x1, x2 and x3 directions. The region where the particles were located was
divided into 30 bins, equally spaced in the x2 direction. The number of particles in each bin is
divided by Dx2 to give a concentration.

At t ¼ 0 all the solid particles are located at x2 ¼ 40. As time proceeds the particles spread out.
The maximum in the concentration decreases and moves toward the wall with increasing time. At
large enough times the maximum exists at the wall. Particles deposit on the wall and the number
of particles in the flow field decreases with time. Eventually all the particles deposit and the
concentration becomes zero everywhere. A plot of the number of particles in the field as a function
of time is given in Fig. 2a as a solid curve. Results on the rate of deposition are presented Fig. 2b.
From Fig. 2b it is seen that deposition doesn�t begin to occur until t ffi 10. The rate reaches a
maximum at t ffi 65. The decrease in the rate after this largely reflects a decrease in the concen-
tration at the wall since the rate is equal to the product of the concentration and the average
velocity of the particles hV2i close to the wall.

This is illustrated in Fig. 3 where the average dimensionless values of the velocity of the par-
ticles depositing on the wall are presented. The dashed line represents the free-fall velocity,
V2 ¼ �VTð¼ �0:42Þ. For t < 10 no solid particles reach the wall. For times slightly greater than
this VW has a larger magnitude than VT. Particles are striking the wall because of their turbulence.
They have very large velocities and are launched toward the wall from locations near x2 ¼ 40. For
large times, VW reaches an approximately constant value, which is larger than VT, indicating that
both particle turbulence and gravity are having an effect. In this region dN=dt varies mainly
because of variations in the concentration near the wall.
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Fig. 1. Distribution of solid particles in the wall-normal direction.
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Mean values of the velocity of the particles in a direction perpendicular to the wall, conditional
on the particle positions and the times, hV2i, are given in Fig. 4. The values of hV2i close to the wall
and VW can be different because these averages represent different populations, in that hV2i rep-
resents all the particles at a given location not just those which are hitting the wall. The horizontal
dashed line represents the free-fall velocity. A similar plot for fluid particles is given by MH. In
this case the mean velocity represents a turbulent flux that results because of the existence of
concentration gradients; it is zero for large enough times when concentration gradients are small.
For solid particles the mean values of V2 show the additional influence due to the gravitational

2.0x104 

1.5

1.0

0.5

0.0

pa
rt

ic
le

s

4003002001000

t

 DNS
 Model
 (τi = τi fluid   )

particle

-140

-120

-100

-80

-60

-40

-20

0

dN
/d

t

4003002001000

t

 DNS
 Model
 (τi = τi fluid   )

particle

(a)

(b)

Fig. 2. (a) Particles remaining in the flow. (b) Rate of deposition of particles.

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

V
W

4003002001000

t

 DNS
 Model

(τi = τi fluid particle)
 - VT

Fig. 3. Average velocity of particles depositing on the wall.

I. Iliopoulos et al. / International Journal of Multiphase Flow 29 (2003) 375–394 383



field, which persists for large times. However, it is noted that the mean velocity can be different
from the free-fall velocity, even for large times.

For t ¼ 25 the mean velocities of solid particles mainly represent turbulent fluxes. At the lo-
cation of the maximum in the concentration the flux is zero. It is positive for x2 > 40 where the
concentration gradients are negative. For large t gravitational settling becomes more important.
The location of zero flux moves to larger x2 and no longer corresponds to the maximum in the
concentration profile. It is noted that at large x2 the mean value of V2 can be positive. This
indicates that the flux of these particles is dominated by turbulent diffusion.

The dispersion of particles in the flow direction is depicted in Fig. 5. This was calculated by
using 30 equispaced bins distributed in the region where the particles were located. The con-
centrations represent the number of particles distributed in the x3 and x2 directions for a given x1.
The solid particles are convected downstream by the mean flow and the turbulence. The distri-
bution is symmetric for t6 25. At later times particles which accumulate close to the wall, where
the velocity is small, tend to lag behind particles farther away from the wall. Consequently,
asymmetric profiles with longer tails develop.

Results on the streamwise velocity fluctuations are presented in Fig. 6. The ordinate is the root-
mean-square of the difference between the instantaneous streamwise velocity and the local mean
velocity. The curves created with dots and dashes give the Eulerian values of ðu21Þ

1=2
. In the study

of the dispersion of fluid particles (MH) the streamwise velocity fluctuations approach the
Eulerian values at large times for all x2. The solid particles show ðv21Þ

1=2
that are only slightly lower

than the Eulerian values for x2 > 15 and large t. However, an interesting behavior for x2 < 15 is
observed for solid particles in that the values of ðv21Þ

1=2
are much larger than ðu21Þ

1=2
. This result is

not anticipated from theories for homogeneous isotropic turbulence. It can be understood by
recognizing that the particles move from regions where the mean and fluctuating velocities of the
fluid are high to regions where they are low without having the time to adjust to the new envi-
ronment. This enhancement of streamwise velocity (fluctuations) of the solid particles in the
presence of gradients of the mean fluid velocity could be a general behavior, as pointed out by
Lillegren (1993).

Results for the root-mean-square of the spanwise component of the particle velocity fluctua-
tions are presented in Fig. 7. Over most of the flow field they are seen to be less than the Eulerian
fluid velocity fluctuations. This is consistent with measurements of v2 represented by Eq. (6).
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These indicate that the inertia of the particle (bsLF ¼ 1:7) is large enough that particles do not
follow the fluid turbulence exactly.

The intensities of the wall-normal and streamwise fluid velocity fluctuations seen by the par-
ticles are given in Fig. 8a and b. The line created with dots and dashes represents the Eulerian
values. Within the statistical accuracy of the calculations, the intensities of velocity fluctuations
seen by the particles equals the Eulerian intensities at large enough times.

Lagrangian correlations of the fluid velocity fluctuations seen by the particles are presented in
Fig. 9. Since the flow is nonhomogeneous, the correlation at time t is normalized by the values of

Fig. 5. Distribution of solid particles in the streamwise direction.
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the rms velocities at time 0 and at time t; i.e., huið0ÞuiðtÞi=hu2i ð0Þi
1=2hu2i ðtÞi

1=2
. Thus Rii does not

assume values greater than unity.
Plots of the Lagrangian correlation coefficients for all of the solid particles that are in the field

at time t are given in Fig. 10. It is noted that R22 drops below zero. This is because the gravita-
tional field causes the solid particles to assume a negative V2 approximately equal to VT, at large
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times. Solid particles that had negative velocities at t ¼ 0 have a small chance to be in the field at
large t. Therefore, particles which have a negative settling velocity at large t most likely had a
positive V2 at time zero.

5. Results for stochastic calculation of dispersion from a point source

5.1. Implementation of the stochastic model

Eqs. (7) and (9) were solved to obtain the changes of the velocity and the position of a solid
particle with time. At zero time the particle velocity and the fluid velocity were selected to be the
same as used in the experiments in the DNS. The fluid velocity is defined as the sum of the
Eulerian average, Uiðx2Þ, and a fluctuation ui. The changes of ui with time are given by Eq. (10).

An Adams–Bashforth explicit scheme, that is accurate to second-order, was used to solve Eqs.
(7) and (9). The Euler explicit method, which is first-order accurate, was used for the first time
step. Eq. (10) was discretized with the fully implicit method. The timestep was the same as was
used in calculations of particle paths in the DNS.
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Fig. 9. Lagrangian correlation of fluid velocity fluctuations seen by solid particles.
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Fig. 10. Lagrangian correlation of velocity fluctuations of solid particles.
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Mito and Hanratty (2002) showed that the use of a joint Gaussian forcing function in the
modified Langevin equation greatly improves the calculations of dispersions, mean velocities and
turbulence quantities in a nonhomogeneous field. Therefore, a random variable dli in Eq. (10)
was specified by a joint Gaussian function with dl2

1, dl2
2, dl2

3, dl1dl2 given by Eq. (12). The
assumption of Gaussianity for the random forcing function implies a velocity field with Gaussian
turbulence. Thus the triple correlations in Eq. (12) were taken to be zero. The assumption of a
correlation for the random variables in Eq. (10) enables the calculation to include the effect of u1u2
which plays an important role in transport phenomena in nonhomogeneous fields.

5.2. Results for dispersion from a point source

Fig. 11 presents the characteristic time scales that were used by MH to calculate dispersion of
fluid particles with the modified Langevin equation. These were used to represent the fluid tur-
bulence seen by the solid particles. Approximate support for this choice is obtained from Fig. 9
where the calculated correlation coefficients of the fluid particle fluctuations seen by the particles
roughly agree with the DNS experiments for R22 and R33. However, this is not the case for R11

where the comparison is suggesting that values of s1 should be smaller than those presented in Fig.
11. A number of calculations were done in which all three time scales were increased or decreased
and in which s2, s3 were kept the same and s1 was decreased. Significant improvements could not
be recognized so the simple procedure of using time scales obtained from a representation of fluid
particle dispersion was chosen.

Calculated concentration profiles, presented in Fig. 1, are seen to be in reasonable agreement
with the DNS experiments. As shown in Fig. 2a the comparison of the calculated number of
particles remaining in the field with the DNS is reasonably good. However the results from the
model are slightly larger. This partially accounts for the differences in the concentration profiles
shown in Fig. 1. A comparison of the rates of deposition is given in Fig. 2b. The calculated
magnitudes are seen to be smaller than the values obtained with the DNS for 10 < t < 100. This
accounts for the differences shown in Fig. 2a. The results shown in Figs. 3 and 4 indicate that
deposition in this range of t is associated with particles that have large velocities and that start
free-flights to the wall at a distance from the wall. The lower deposition rates predicted by the
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Fig. 11. Time scale variation of fluid particles with the distance from the wall.
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model seem to suggest the number of particles launched toward the wall is larger than is predicted
by a Gaussian forcing function. For t > 100 the calculated rates of deposition are slightly larger
than what is observed in the DNS experiments. This probably is a consequence of the larger
concentrations of particles predicted to exist at the wall.

Calculated values of the mean velocity in the wall-normal direction, shown in Fig. 4, are in
good agreement with the DNS. The values of the magnitude of hV2i at the wall are seen to be
slightly smaller for the model. This is consistent for the differences in dN=dt seen in Fig. 2b.

Calculated concentration profiles in the x1-direction are compared with the DNS in Fig. 5. The
agreement is quite good.

The calculated root-mean-square of the velocity fluctuations in the streamwise direction, shown
in Fig. 6, agree with the DNS values. As seen in Fig. 7, both the model and the DNS show values
of the spanwise root-mean-square of the velocity fluctuations, at large times, which are smaller
than the Eulerian values. Fig. 8a and b present values of the root-mean-square of the fluid velocity
fluctuations seen by the particle. Both the model and the DNS produce values that are approx-
imately in agreement with Eulerian results. The predicted values of the Lagrangian correlation
coefficients, shown in Fig. 10, agree with the DNS. This agreement is particularly striking for R22

and R33.

6. Results for dispersion of uniformly distributed particles

6.1. Description of DNS

A calculation was carried out to examine the settling of uniformly distributed particles in a
horizontal turbulent channel flow. This was done with the same flow field and solid particles that
were used in the DNS study of dispersion from a point source. The channel was filled with
27� 104 solid particles which had the same velocity as the fluid at time zero, so that there was a
uniform distribution of sources. The simulation was performed over a time period of 500.

6.2. Implementation of stochastic model

The Langevin Eq. (10) was also used to calculate the settling of uniformly distributed particles
in the horizontal turbulent channel flow. The numerical method was the same as described in
Section 5.1. The characteristic time scales of fluid particles, shown in Fig. 11, were used. The
initial conditions were selected to be the same as used in the DNS experiment.

6.3. Results

Time variation of the concentration profiles of the solid particles is given in Fig. 12. A bin size
of Dx2 ¼ 10 was used for the sampling. Results from the DNS experiment are represented by solid
curves and results from the model calculation are represented by dotted curves. At time zero the
concentration is uniform, as represented by the dashed line. The particles tend to move toward the
bottom wall due to the gravitational force. This causes steep gradients of the concentration
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profiles near the top wall. At small times the particles redistribute, mainly, by turbulence. The
minima that appear close to the top and bottom walls at t ¼ 25 result from a turbophoretic effect,
whereby particles move from regions of high turbulence to regions of low turbulence.

As time proceeds gravity plays a more important role. At t ¼ 100 the concentration is observed
to decrease markedly near the top wall. However, the effects of nonhomogeneities in the turbu-
lence can be still be noted. At t ¼ 500 the particles are observed to have a maximum at the bottom
wall and to decrease monotonically with increasing x2.

The model is seen to agree with the DNS results at t ¼ 25. However, at t ¼ 100 and 300, the
model shows larger concentrations of particles than the DNS at large values of x2. These results
suggest that the model is predicting that gravitational settling is opposed by larger turbulence at
large x2 than is observed in the DNS. At large times the particle concentration close to the wall is
observed to decrease more rapidly in the DNS calculations than in the model calculations. The
model appears to be underpredicting the influence of turbulence in depositing particles. Similar
results had been observed in the studies of dispersion from a source at x2 ¼ 40.

The time variation of the number of particles in the field is presented in Fig. 13a and the rates of
deposition, in Fig. 13b. The average velocities of the particles hitting the wall are presented in Fig.
14. The free-fall velocity is represented by a dashed line. Due to the initial conditions VW is zero at
t ¼ 0. Its magnitude decreases monotonically with time and reaches a constant value, at about
t ¼ 100, which is almost the same as observed in Fig. 3 for the dispersion of particles from a
source at x2 ¼ 40. However, the results shown in Fig. 14 differ from those in Fig. 3 in that particles
start to deposit immediately after the start of the process. This is because they are distributed
uniformly at t ¼ 0. Those arriving at the wall, therefore, start their free-flight to the wall at a
number of locations, where the magnitudes of the turbulent velocity fluctuations can be quite
different. Thus, the average values of VW in Fig. 3 are much larger at small times. The model is
seen to give smaller values of VW than is observed in the DNS. This is reflected in the smaller rates
of deposition shown in Fig. 13b. At t ¼ 500 the model and the DNS give the same deposition
rates. This occurs because the larger VW obtained with the DNS is counterbalanced by a smaller
concentration near the wall.

The root-mean-square of the fluid velocity fluctuations seen by the particles are presented in
Fig. 15. The results from the DNS are represented by solid curves and the Eulerian values are
represented by curves with dots and dashes. The turbulence, seen by the particles in the model
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calculations, is roughly the same as the Eulerian turbulence. This is not surprising since the co-
variance of the forcing function is selected, through Eq. (12), to provide this behavior for a
Gaussian representation of dli. The experiments in the DNS show a difference from the Eulerian
statistics, in that the particles in the model see larger fluid turbulence at 190 < x2 < 280 than the
particles in the DNS. This is consistent with the explanation, given earlier, for the differences for
concentration profiles at large x2 shown in Fig. 12.
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7. Discussion and conclusions

The Langevin equation is used to describe fluid velocity fluctuations seen by the particles by
making the simplifying assumptions that (1) the forcing function is Gaussian and (2) that the time
scales of the fluid velocity fluctuations are same as was found by Mito and Hanratty (2002) for
dispersing fluid particles. The conditions selected for the study were such that particles have a
significant free-fall velocity (VT ¼ 0:46), an inertial time constant (bsLF ¼ 1:7) that allows the
particles to have turbulence intensities which are slightly smaller than the fluid and a ratio of the
stopping distance to the thickness of the viscous wall layer (b�1 ¼ 20) that allows the particles to
move in free-flight through a large region close to the wall. The selected value of b indicates that
particles released from a rest position would reach a velocity close to free-fall at t ¼ 50. Two
experiments were considered: dispersion from an instantaneous point source located at x2 ¼ 40
and the settling of particles that are uniformly distributed at t ¼ 0. The field is fully developed
turbulent flow in a channel.

Considering the simplicity of the model and the simplicity of the assumptions used in its im-
plementation, the agreement with experiments performed in a DNS is very good. Two differences
are that the model slightly underpredicts the velocity with which the particles hit the wall and
slightly overpredicts turbulent dispersion in the outer flow. The first of these leads to an under-
prediction of the rate of deposition for a given concentration at the wall. The second results in the

Fig. 15. Ensemble root-mean-squares of wall-normal fluid velocity fluctuations seen by solid particles conditional on

the particle positions for dispersion of uniformly distributed particles.
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prediction of larger concentrations at larger x2 in the experiment on the settling of a uniform
distribution of particles. The reasons for these discrepancies are not understood.

The model correctly predicts that the magnitude of the deposition velocity in a turbulent field is
larger than the free-fall velocity of the particles. However, Figs. 3 and 14 show that the model
predicts a smaller effect of turbulence. One possible explanation is that the prediction could be
improved by choosing different time scales. Calculations aimed at demonstrating this were not
conclusive, mainly because the calculations were not very sensitive to changes in the time scales.
Another explanation is that the assumption of a Gaussian forcing is an oversimplification. The
inclusion of skewness and flatness could result in the prediction of a larger number of particles in
the viscous wall layer that can move in free-flight to the wall. This was partially explored in
calculations in which skewness was considered and the triple correlation in Eq. (12) was not set
equal to zero. These changes did not produce an explanation of the effects that were observed.

It seems that the most likely explanation of the discrepancies is that the model is too simple to
capture influences of turbulence structure. For example, the interaction between the particles and
the structure could produce larger free-fall velocities in a turbulent field than would be observed
in a stagnant field (Maxey, 1987; Wang and Maxey, 1993).
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